Ergospirometric testing: a modern approach to the diagnosis of physical health

Yurii Konoval 1* Gennadii Kirzhner2

1 Sports Physiologist, LLC “Dokos Medical”, 52 Hetmana Pavla Polubotka Street, Kyiv, Ukraine, 02094, https://orcid.org/0009-0002-4298-1305
2 Ph.D. in Medical Sciences, M.D., Associate Professor, Bogomolets National Medical University, 13, T. Shevchenko Blvd., Kyiv, Ukraine, 01601, https://orcid.org/0000-0002-9507-3063

Abstract
Ergospirometry is a modern approach to the diagnosis of physical health that involves the use of exercise testing to measure cardiopulmonary function.

Aims: To compare the distribution of health characteristics and their relationship between participants, to evaluate the accuracy of hypertension, hyperlipidemia and diabetes in both groups, to measure respiratory rate and heart rate between ergospirometric testing and traditional testing for physical health assessment.

Study design: A comparative cross-sectional design to assess ergospirometric testing and traditional testing for physical health assessment.

Methodology: The study employed a comparative cross-sectional design, utilizing convenience sampling to recruit participants for ergospirometric testing on a treadmill and the traditional 6-Minute Walk Test. Sample size determination yielded 100 participants (50 per group). Data on sociodemographic, comorbidities, and physiological parameters were collected and analyzed using descriptive statistics, chi-square tests, and independent sample t-tests.

Results: The study compared Ergometric testing on a treadmill with the Traditional 6-Minute Walk Test across various parameters. Participants undergoing Ergometric testing were younger with more females and smokers, while the Walk Test group had higher BMI and exercise rates. Ergometric testing revealed higher rates of hypertension (P = 0.034) and hyperlipidemia (P = 0.021) but lower diabetes prevalence (P = 0.016). Additionally, Ergometric testing showed a better detection of respiratory parameters, exercise stress detection (P = 0.009), and cardiovascular parameters as compared to Traditional testing. Furthermore, it has a higher sensitivity 85% and specificity 80% compared to the traditional testing having sensitivity 75%, and specificity 70%.

Scientific Novelty: Spirometry testing has made an impact on physical examination today; using advanced technology to achieve the best, sensitivity and specificity marks changes in the actual examination.

Conclusion: Ergometric testing (treadmill) shows a significant advantage over traditional testing (6-Minute Walk Test) in diagnosing physical health conditions with a high sensitivity, specificity, and comprehensive parameter assessment.

Keywords: exercise testing, physical fitness assessment, cardiopulmonary exercise testing, diagnostic techniques, cardiovascular, health status indicators.

Received: November 27, 2023
Revised: December 6, 2023
Accepted: April 8, 2024
Published: April 22, 2024

Introduction

Exercise spirometry is a new technology for assessing physical fitness that uses cardiac electrocardiography (CPET) to measure exercise capacity and assess the risk of heart problems [1]. CPET is a non-invasive technique that
measures a person’s body’s response to physical activity by measuring oxygen consumption and carbon dioxide production during exercise [2, 3]. This information is used to determine a person’s maximum oxygen consumption (VO2 max), an important measure of a person’s cardiovascular and overall health [4]. CPET can be performed using different exercise tests, such as cycle ergometer testing (CET) and treadmill testing (TMT), enhanced with a gas analyzer to measure oxygen and carbon dioxide production. Depending on the measurement and purpose of the tests, tests can be classified as screening tests or special tests [5]. On the other hand, traditional tests such as 2-minute walk test, 6-minute walk test and 10-meter walk test are widely used due to their simplicity, but they are less useful compared to regular tests. Effective. Provide cardiopulmonary resuscitation and restrictions on respiratory measures [6, 7].

Research Problem

There is various testing technique associated with the evaluation of physical fitness. Problems are associated with both kinds of testing methods traditional and nontraditional ergospirometric. In order to evaluate several physiological parameters associated with physical health, ergospirometric testing provide a base for calculating at a time multiple parameters. Current study challenge focused on comparing the diagnostic accuracy, and effectiveness of ergospirometric testing (the treadmill) to conventional techniques (6-Minute Walk Test) with the overall goal of determining the potentials of ergospirometric testing as compared to traditional testing as a more precise and reliable diagnostic tool for assessing physical health.

Research Focus

This study aims to compare the diagnostic precision of ergospirometric testing with traditional testing techniques for measuring physiological parameters linked to physical health issues. Current study also seeks to compare the outcomes of ergospirometric testing with traditional testing methods in terms of participant demographics, morbidity, respiratory and cardiovascular parameters, and diagnostic precision.

Research Aim

Aims and objectives are to

- Determine sociodemographic characteristics distribution and their association among the participants undergoing ergometric testing and the traditional testing.
- Assess the diagnostic accuracy regarding hypertension, hyperlipidemia, and diabetes in participants undergoing Ergometric testing and traditional testing.
- Evaluate respiratory parameters (e.g., VO2peak, VO2@AT, RERpeak) between participants undergoing Ergometric testing and traditional testing.
- Compare cardiovascular parameters (e.g., HRpeak, SBPpeak, Peak SBP*HR) between participants undergoing Ergometric testing and traditional testing.
- Determine the sensitivity, and specificity of ergometric testing and traditional testing in diagnosing physical health conditions.

Research Questions

1. How do sociodemographic characteristics, such as age, gender, and smoking status, differ between participants undergoing Ergospirometric testing on a treadmill and those undergoing the Traditional 6-Minute Walk Test?
2. What are the variations in the prevalence of common comorbidities (hypertension, hyperlipidemia, diabetes) between participants undergoing Ergospirometric testing on a treadmill and the Traditional 6-Minute Walk Test?
3. How do respiratory parameters, including VO2peak, VO2@AT, and RERpeak, differ between participants undergoing Ergospirometric testing on a treadmill and the Traditional 6-Minute Walk Test?
4. What are the differences in cardiovascular parameters, such as HRpeak, SBPpeak, and Peak SBP*HR, between participants undergoing Ergospirometric testing on a treadmill and the Traditional 6-Minute Walk Test?
5. What is the comparative diagnostic accuracy, sensitivity, and specificity of Ergospirometric testing versus Traditional testing methods in diagnosing physical health conditions, based on the findings of the study?

Literature review

Chronic respiratory disease makes life difficult. In 2016, these diseases killed 3.8 million people, accounting for 7% of deaths worldwide. The fact that 75% of these deaths occurred in people aged 30-69 shows that CRD is not just a problem for the elderly. Approximately 3 million people die from chronic obstructive pulmonary disease...
Spirometry is a crucial diagnostic tool for both heart and lung health, as it measures the amount of air a person can inhale and exhale, as well as the speed of exhalation. This information is essential for diagnosing and monitoring respiratory conditions such as asthma, chronic bronchitis, and chronic obstructive pulmonary disease [10]. Exercise spirometry, also known as cardiopulmonary exercise testing, is a routine method of measuring heart and lung function to determine physical fitness [11]. During physical activity, these models measure the effectiveness of cardiovascular and pulmonary function and provide important information about the patient as a whole and the patient’s physical activity and activity level. These measurements measure variables such as oxygen consumption, carbon dioxide production, and heart rate response during exercise. The physical well-being of an individual is an important aspect and emphasize its importance in monitoring and evaluation of personalized health status and provides a base for the tailoring the targeted exercise regimens. Ergospirometry stands as a valuable tool in optimizing fitness and health outcomes in both healthy peoples and at-risk peoples because of the ability to quantify physiological responses to exercise. Cardiopulmonary fitness is a function of lean mass, not total body weight, and poor cardiopulmonary fitness is an independent risk factor for cardiovascular and metabolic diseases in the general population. High physical activity and cardiopulmonary fitness are associated with reductions in all-cause and cardiovascular (CVD) mortality, and this association is independent of reductions in CAD, hypertension, diabetes, stroke, and cancer. An association between CRF and mortality was also observed in the elderly and hypertensive patients [12-15]. The utilization of exercise testing in diagnosing and managing chronic health problems like cardiovascular conditions is time needed to healthcare professionals as the technology is advancing day by day. To provide such diagnostic and management tools a comprehensive framework of guidelines is jointly issued by the American College of Chest Physicians and the American Thoracic Society to ensure consistent and evidence-based approaches across clinical settings and improving the accuracy of diagnoses, optimize treatment strategies, and improve patient outcomes [16,17]. Ergospirometry, an exercise testing, is a strenuous, cost and time taking exercise test that not only assesses the cardiovascular fitness and the body’s physiological reactions but also measure gas exchange levels. Exercise that requires a lot of energy, such as aerobic or endurance training, is mostly powered by oxidative adenosine triphosphate synthesis energy. The integrated activities of the circulatory, pulmonary, hematologic, and neurohumoral systems link the dynamically coupled processes of muscle cell carbon dioxide production and oxygen consumption to lung carbon dioxide emission and oxygen uptake. As a common measure of aerobic capacity and a predictor of outcomes in a variety of groups, maximum oxygen uptake [18]. Unlike exercise ECG, the direct noninvasive measurement of minute ventilation, heart rate, and analysis of expired gases oxygen uptake and carbon dioxide output at rest and during exercise yields precise and consistent data on the relationship between ventilation, gas exchange, cardiovascular function, and musculoskeletal function [19].

Ergospirometry or cardiopulmonary exercise testing is a valuable tool used for multiple purposes. These exercise testing being an advance technique is most commonly used to diagnose myocardial ischemia, differentiate the between cardiac, pulmonary, and non-cardiopulmonary dyspnea and the prognosis of patients with chronic disease like coronary artery disease [20-22]. These exercise testing can also be utilized among children with congenital heart disease in addition to adults to evaluate the cardiac functional capability of individuals. That’s why these exercise testing is mostly used in individuals who have suspected or have verified cardiopulmonary diseases [23].

Ergospirometry involves a variety of exercise test. Among them the most common is a treadmill, that measure parameters like oxygen consumption, carbon dioxide production and heart rate, and in this way, it provides a detailed information on cardiovascular and respiratory function. This also assess the aerobic capacity and overall physical fitness of an individual and requires specialized equipment and involves wearing a mask for gas analysis and electrodes for ECG monitoring. While traditional exercise testing like 6-minute walk test by walking for 6 minutes on a flat surface and measuring the distance covered evaluates the functional exercise capacity and requires a minimal equipment, a simpler measure of exercise tolerance and is straightforward and commonly used testing method for physical fitness evaluation [24].

Traditional exercise testing, like the 6-minute walk test are also commonly used due to simplicity but has limitations in providing comprehensive cardiovascular and respiratory assessment compared to ergospirometry. Among the limitations the lacks continuous ECG, blood pressure monitoring, are the common leading to limited evaluation of cardiovascular function during exercise. Other limitations are challenges related to accurate determination of aerobic and anaerobic thresholds, adaptability to different exercise modes and restricted individual needs. Validity and reliability are also compromised due to insufficient diagnostic utility and standardization [25].

The gold standard exercise test for aerobic capacity evaluation is ergospirometry testing, that offers a comprehensive data on parameters related to cardiovascular and respiratory function through a continuous ECG and blood pressure monitoring during exercise. In this way it precisely evaluates cardiovascular function of

(COPD) each year, making it the third leading cause of death worldwide. As smoking in developing countries and populations in high-income countries increases, the prevalence of COPD is expected to increase over the next 30 years, and it is estimated that more than 4.5 million people will die from COPD and related diseases each year by 2030 [8,9].
individuals. This testing also provides insights into respiratory function and metabolic efficiency by gas exchange measurement and determination of aerobic and anaerobic thresholds. Ergospirometry is valuable test for diagnosis, treatment, and evaluation of physical fitness [26, 27].

Ergospirometry exercise testing, is a non-invasive method and examines the integrated responses of the cardiovascular, pulmonary, neuromuscular, and metabolic systems during physical activity. This testing is dynamic technique that not only offers a valuable insight into an individual’s overall fitness, but aid in the diagnosis and management of various medical conditions related to exercise [28].

Ergospirometry is not exclusively used for early diagnosing and management of chronic health conditions like cardiopulmonary disease, and wellness but additionally, these can be utilized to evaluate the physical fitness among those individuals who are athletes, or paly any physical games like basketball that put stress on a person. These testing by determining parameters, like VO2 max and the levels of aerobic and anaerobic threshold, helps to customize a training regimen with the target of increasing athletic physical and functional performance [29]. Additionally, ergospirometry can be used to determine the individual heart rate zones of cyclists participating in track races. This is achieved thanks to the possibility of testing with gas analysis, which allows you to accurately determine individual zones of load intensity for each athlete and helps cyclists effectively tailor their training regimens to improve functional performance [30]. Through the use of ergometric exercise testing a pre training program for the physical fitness of players for forthcoming seasons may be prepared and effectively implemented to achieve complete physical fitness [31–33]. Ergospirometric testing can also integrating other diagnostic techniques such as fiber optic laryngoscopy to increase more diagnostic ability of the testing of physical wellbeing of an individual [34] and provide a more holistic approach for understanding and evaluation of an individual’s physiological status [35].

In conclusion the current study aims to evaluate comparative diagnostic accuracy, sensitivity, and specificity of Ergospirometric testing versus Traditional testing methods in diagnosing physical health conditions, based on the findings of the study. The study seeks to enhance diagnostic accuracy, optimize treatment strategies, improve patient outcomes and ultimately contributes to advancing personalized healthcare and physical fitness.

Research Methodology

General Background

In recent years, due to progress in medical technologies, namely the development of transplantology and rehabilitation technologies, the task has been to adequately assess the adaptive capabilities of the cardiovascular and respiratory system in order to resolve the issue of the feasibility and timeliness of heart and lung transplantation or the functioning of the transplant. The accuracy and informativeness of CPET in this situation fully justifies its use. In addition, high hopes are placed on the methodology when planning rehabilitation technologies for patients with metabolic syndrome and broncho-obstructive diseases.

The standard test with a six-minute walk is simple, cheap, understandable, but does not provide an opportunity for the formation of a treatment strategy or for pharmacological correction. In addition, CPET allows you to predict probable achievements in rehabilitation, and, accordingly, in training.

Since, unfortunately, the number of patients with damage to the cardiovascular system, respiratory system, endocrine diseases is increasing and the possibilities of medicine are increasing, we can expect an increase in the demand for more accurate and informative studies, one of which is CPET.

Study Design

A comparative cross-sectional study design was used to assess the efficacy and diagnostic accuracy of ergospirometric testing, as compared to traditional methods.

Sampling Method

A non-random convenience sampling method was adopted to recruit participants.

Sample Size Determination

A suitable sample size was calculated as under;

\[n = \frac{N \times Z^2 \times p \times (1 - p)}{(N - 1) \times E^2 + Z^2 \times p \times (1 - p)} \]

Where:

N = population size = 100000
Data Analysis

Sociodemographic information (e.g., age, gender, smoking status), comorbidity prevalence (hypertension, hyperlipidemia, diabetes), respiratory parameters (VO2peak, VO2@AT, RERpeak), and cardiovascular parameters (HRpeak, SBPpeak, Peak SBP*HR) was collected from participants using standardized questionnaires, medical records, and physiological measurements.

Descriptive statistics was used to summarize sociodemographic characteristics and prevalence of comorbidities in both groups. Chi-square tests was applied to assess the significance of differences in categorical variables, while independent sample t-tests was applied to analyze continuous variables.

Research Results

The table 1 presents a comparison of sociodemographic characteristics between participants undergoing ergometric testing on a treadmill and the traditional 6-Minute Walk Test. A chi-square test of significance was applied to assess significance. Participants in the ergometric testing group were younger (mean age 59.7 ± 4.5 years) compared to those in the 6-minute Walk Test group (mean age 61.8 ± 5.0 years), and the former had a higher proportion of females (20 vs. 10) and smokers (41 vs. 15). Conversely, the 6-minute Walk Test group had more participants with a BMI ≥ 23 (35 vs. 23) and exercise habits (33 vs. 22). These differences were statistically significant (P < 0.05). These findings have their implication of potentially influencing the interpretation and application of these tests in diagnosing physical health conditions.

Table 1. Comparison of Ergometric Testing (Treadmill) and Traditional 6-Minute Walk Test Across sociodemographic characteristics Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sub-Categories</th>
<th>Treadmill (n=50)</th>
<th>6-minute Walk Test (n=50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td>59.7 ± 4.5</td>
<td>61.8 ± 5.0</td>
<td>.029</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>30</td>
<td>40</td>
<td>.029</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>20</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Body mass index (BMI)</td>
<td>< 23.9</td>
<td>15</td>
<td>27</td>
<td>.015</td>
</tr>
<tr>
<td></td>
<td>≥ 23</td>
<td>35</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Smoker</td>
<td>Yes</td>
<td>41</td>
<td>15</td>
<td>.000</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>9</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Having Exercise Habits</td>
<td>Yes</td>
<td>22</td>
<td>33</td>
<td>.022</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>28</td>
<td>17</td>
<td></td>
</tr>
</tbody>
</table>

The table 2 compares the both types of testing related to their ability in early detection of chronic morbidities, including hypertension, hyperlipidemia, and diabetes. Among those undergoing ergometric testing, higher proportions were early diagnosed with hypertension (34 individuals) and hyperlipidemia (27 individuals) compared to the traditional test group (24 individuals and 16 individuals, respectively), while a lower proportion had diabetes (11 individuals) compared to the traditional test group (22 individuals). Chi-square tests revealed significant differences in the prevalence of early detection of all three morbidities between the two testing methods (P = 0.034 for hypertension, P = 0.021 for hyperlipidemia, and P = 0.016 for diabetes), suggesting that ergometric testing may offer distinct advantages in diagnosing these conditions compared to the traditional testing like 6-Minute Walk Test, potentially indicating its efficacy as a modern approach to assessing physical health.

Table 2. Comparison of Ergometric Testing (Treadmill) and Traditional 6-Minute Walk Test in early detection morbidities

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sub-Categories</th>
<th>Treadmill (n=50)</th>
<th>6-minute Walk Test (n=50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hypertension</td>
<td>Yes</td>
<td>34</td>
<td>24</td>
<td>.034</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>16</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Hyperlipidemia</td>
<td>Yes</td>
<td>27</td>
<td>16</td>
<td>.021</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>23</td>
<td>34</td>
<td></td>
</tr>
<tr>
<td>Diabetes</td>
<td>Yes</td>
<td>11</td>
<td>22</td>
<td>.016</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>39</td>
<td>28</td>
<td></td>
</tr>
</tbody>
</table>

The table 3 shows the results of the evaluation of respiratory parameters between ergospirometric testing conducted on a treadmill and the traditional testing by 6-minute Walk Test. Among participants undergoing treadmill Ergospirometric testing, 28.0% exhibited a positive exercise stress test result, indicating physiological stress during exercise, compared to only 8.0% in the Walk Test group, with a statistically significant difference (P = 0.009). Ergospirometric testing (Treadmill) resulted in significantly higher mean values for VO2peak (24.15 mL/kg/min) and VO2@AT (19.55 mL/kg/min) compared to the Walk Test (VO2peak: 18.4 mL/kg/min; VO2@AT: 11.7 mL/kg/min).
mL/kg/min), with narrower interquartile ranges in the Walk Test group. Additionally, participants undergoing treadmill Ergospirometric testing exhibited a lower mean RERpeak (1.09) compared to the Walk Test group (1.2), with a narrower range in the treadmill group. These findings suggest that ergospirometric testing like treadmill provides more sensitive assessments of respiratory parameters, exercise stress, and aerobic capacity compared to the traditional testing like 6-minute Walk Test, potentially offering a valuable modern approach to diagnosing physical health conditions related to exercise physiology.

Table 3. Comparison of the Respiratory parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treadmill (n=50)</th>
<th>6-minute Walk Test (n=50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercise stress test (Positive)</td>
<td>14 (28.0%)</td>
<td>4 (8.0%)</td>
<td>.009</td>
</tr>
<tr>
<td>VO2peak, mL/kg/min</td>
<td>24.15 (21.5,27)</td>
<td>18.4 (15.5,20.7)</td>
<td>.000</td>
</tr>
<tr>
<td>VO2@AT, mL/kg/min</td>
<td>19.55 (16.5,22.5)</td>
<td>11.7 (10.3,12.9)</td>
<td>.000</td>
</tr>
<tr>
<td>RERpeak</td>
<td>1.09 (1.05,1.13)</td>
<td>1.2 (1.14,1.23)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: VO2 peak, peak oxygen uptake; VO2@AT, oxygen uptake at the anaerobic threshold; RERpeak, peak respiratory exchange ratio.

The table 4 compared the cardiovascular parameters between ergospirometric testing on a treadmill and the traditional testing by 6-Minute Walk Test. Applying a chi-square test, significant differences were observed across various metrics. Firstly, participants undergoing the ergospirometric testing achieved a higher peak heart rate with a median of 136.5 beats per minute compared to 128 beats per minute in those undergoing the traditional testing like 6 minutes’ walk test. Additionally, peak systolic blood pressure was slightly lower in the ergospirometric testing group, with a median of 171.5 mmHg, contrasting with 174 mmHg in the traditional testing group. However, the product of peak systolic blood pressure and peak heart rate was significantly higher in the ergospirometric testing group, indicating a potentially greater cardiovascular workload. Specifically, the ergospirometric testing group exhibited a median product of 24,981 mmHgxbpm compared to 21,734 mmHgxbpm in the traditional testing group. These findings underscore the efficacy of ergospirometric testing, particularly on a treadmill, as a modern approach for evaluating cardiovascular parameters in diagnosing physical health conditions.

Table 4. Comparison of the Cardiovascular parameters

<table>
<thead>
<tr>
<th>Variable</th>
<th>Treadmill (n=50)</th>
<th>6-minute Walk Test (n=50)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>HRpeak, bpm</td>
<td>136.5 (126,145)</td>
<td>128 (119,138)</td>
<td>.000</td>
</tr>
<tr>
<td>SBPpeak, mmHg</td>
<td>171.5 (150,188)</td>
<td>174 (163,185)</td>
<td>.041</td>
</tr>
<tr>
<td>Peak SBPHR, mmHgbpm</td>
<td>24981 (22987,26500)</td>
<td>21734 (19215,23333)</td>
<td>.000</td>
</tr>
</tbody>
</table>

Note: HRpeak, peak heart rate; SBPpeak, peak systolic blood pressure.

Figure 1 delineates a crucial diagnostic parameter such as sensitivity and specificity among the two testing groups. In the ergospirometric group, the sensitivity and specificity were reported as 85% and 80%, respectively.

![Figure 1. Diagnostic accuracy](image.png)

This indicates that ergospirometric testing adeptly identifies 85% of individuals with the condition and accurately excludes 80% of those without it. Conversely, the traditional testing, exhibited slightly lower diagnostic accuracy,
with sensitivity and specificity rates of 75% and 70%, respectively. This implies that the traditional testing method correctly identifies 75% of positive cases while accurately excluding 70% of negative cases. Overall, the results show that ergospirometric testing have a higher diagnostic precision in discerning both positive and negative cases, thus is a more reliable diagnostic tool for assessing physical health compared to the traditional testing method.

Discussion

Current study shows that ergospirometric testing provide more advantages as compared to the traditional testing in evaluating physical health and attract a wider range of people implying that it could potentially motivate more persons to undergo diagnostic testing. Moreover, the ergospirometric testing being a modern technique highlights its potential effectiveness in assessing cardiovascular well-being, among the people who are at greater risk like individuals who smoke, high lipid profile and high glicemic level. Factors like body mass index and activity patterns also affecting fitness levels and overall health condition, both of which are vital indications of physical fitness and susceptibility to diseases. Another research shows that traditional testing in the field of pediatrics is useful to use as it is non-invasive, simple and cost-effective methods to test cardiopulmonary function in children and adolescents [36]. However, many other studies have emphasized limitations of ergospirometric testing despite their valuable applications in domains including pulmonology, cardiology, and sports medicine and offer assessment of a wide range of factors, which require meticulous analysis approaches thorough evaluation of exercise testing data [37]. All these findings emphasizes that ergospirometry testing is a thorough tool for detecting physical health issues and offers a broader perspective on understanding the demographic and health-related aspects compared to conventional methods.

Current study results also highlight the importance of ergospirometric testing as a more superior diagnostic tool for physical health issues like occurrence of hypertension and hyperlipidemia and helps in early detection of cardiovascular risk factors more effectively than the traditional testing and provides a comprehensive understanding of cardiovascular health and metabolic function, potentially leading to the early identification and treatment of these chronic health disorders. Other studies show a different perspective and shows traditional testing more reliable testing method. One study examined the impact of brisk walking (traditional testing method) on fasting blood glucose levels and blood pressure and shows a substantial decrease in blood pressure after an 8-week vigorous walking intervention. This study further emphasized the beneficial effects of aerobic exercise on cardiovascular health and blood pressure control [38]. Similarly, another study specifically examined the 6-minute walk test in individuals with type 2 diabetes and discovered that alterations in the walking distance measured by the 6-minute walk test before and after personalized training can indicate a decline in VO2max, but not necessarily an enhancement. These findings highlight the need of having a detailed understanding of the connection between exercise capacity and physiological factors through more advanced ergospirometric testing [39]. In summary ergospirometric testing show a modern and promising way to diagnose and monitor physical health due to its capability to record a wider variety of physiological responses.

The results of the current study, also shows that ergospirometric testing is more sensitive in identifying physiological stress during exercise as large number of participants revealed a positive exercise stress tests in study suggesting that the former has ability to detect cardiovascular and respiratory problems at an early stage. Furthermore, it offers a more accurate evaluation of aerobic capacity, which is essential for measuring cardiovascular fitness and exercise tolerance and provides a more comprehensive evaluation of respiratory function. While other studies also emphasized on the importance of tradition testing over ergospirometric testing. Among these one of the studies on the patients with chronic obstructive pulmonary disease revealed that the average distance walked in the hallway was significantly longer than the average distance walked on the treadmill. This shows that the treadmill test may underestimate the functional capacity of individuals with COPD. These findings may be due to particular group or due to more stress associated with ergospirometric testing like treadmill [40]. In addition, another study conducted to evaluate the accuracy of the six-minute walk test in children with congenital heart disease determined specific values that can be used to categorize physical fitness and found connections with variables from the cardiopulmonary exercise test stressing on the use of the traditional testing like 6-minute walk testing as compared to treadmill Ergospirometric testing [41]. In addition, a cross-sectional study was conducted to compare the performance of obese/overweight children and normal-weight children in the 6-minute walk test and their hemodynamic parameters and found that OW&OB children had lower performance and experienced higher hemodynamic stress and, in this way, highlighting the significance of early intervention in order to reduce future health risks using more latest Ergospirometric testing [42]. In summary, multiple studies confirms that Ergospirometric testing, namely on a treadmill, is the most effective method for obtaining comprehensive information about the body’s physiological reactions during exercise and shows potential for detecting physical health issues, informing therapy choices, and optimizing individualized exercise plans.

Current study also revealed that ergospirometric testing emerges as superior to the traditional testing for evaluating physical health, cardiovascular fitness and stress levels by showing an elevated peak heart rate. Despite
slightly lower peak systolic blood pressure, within healthy limits ergospirometric testing suggests a less cardiovascular strain, potentially safer for heart-related issues. With controlled conditions and quantitative data, it offers reliable insights into cardiovascular function, aiding diagnosis and treatment. These results are similar to the results found in other study revealing that ergospirometric testing is a significant tool for accurately measuring cardiorespiratory fitness, especially in athletes and assists in identifying subclinical illnesses by examining data such as VO2max, ventilatory thresholds, oxygen pulse, evaluating performance and detecting underlying illnesses earlier for effective management [43]. Studies also highlights that there is maximum oxygen consumption in ergospirometric testing. Among such studies there is one study which utilized ergospirometry and body percussion through the BAPNE approach and found similar results showing individual engaged in treadmill exercise achieved a maximal oxygen consumption of 2.61 liters per minute and a maximum heart rate of 189 beats per minute [44]. In summary, Ergospirometric testing, has become a vital tool in modern healthcare practices for evaluating and enhancing cardiovascular health.

The results of the current study, reveals that ergospirometric testing demonstrated high sensitivity and specificity, and provide a more accurate and dependable diagnostic method, which could help in early and more precise diagnosis of health problems. Furthermore, the study emphasized its adaptability and relevance in various patient populations as compared to tradition testing. Other literature also shows more sensitivity and specificity of this test as compared to traditional testing. Among these studies there is one study that found its predicting ability ranged from 96% to 100% and also demonstrated a high level of sensitivity and specificity in accurately early diagnosing chronic diseases like heart failure, chronic obstructive pulmonary disease [45]. While other studies have more diversion toward traditional testing. one study explores the techniques for assessing physical capability, and emphasizing the advantages associated with this as engaging in regular physical exercise has a beneficial impact on the duration of DM1 remission each tailored to specific requirements and levels of complexity [46]. Overall, Ergospirometric testing, also known as cardiopulmonary exercise testing, is a beneficial method for identifying physical health issues and evaluating exercise capacity and cardiovascular function.

Conclusions

The current study through meticulous analysis have successfully shed light on the efficacy of modern ergospirometric testing, particularly treadmill-based, when juxtaposed with traditional methods like the 6-Minute Walk Test. The study encompassed a wide array of objectives, including the examination of sociodemographic characteristics, diagnostic accuracy concerning prevalent health conditions, and the assessment of key physiological parameters related to respiratory and cardiovascular health. By comparing participants undergoing ergometric testing to those undergoing traditional methods, our findings distinctly delineate the superior diagnostic precision, sensitivity, and specificity of ergospirometric testing. These results not only underscore the evolving landscape of diagnostic methodologies but also emphasize the critical role of modern techniques in enhancing our understanding and evaluation of physiological functioning and health outcomes. The higher diagnostic precision, sensitivity, and specificity of ergospirometric testing compared to traditional methods significantly contribute to the research aim of enhancing diagnostic accuracy in several ways. Firstly, the superior sensitivity of ergospirometric testing (85%) means it accurately identifies a higher proportion of individuals with the condition under study. This is crucial for early detection and intervention, potentially leading to better health outcomes. Similarly, the higher specificity (80%) indicates that ergospirometric testing is adept at correctly excluding individuals who do not have the condition, reducing false positive results and unnecessary treatments or interventions. Conversely, traditional testing methods exhibit slightly lower sensitivity (75%) and specificity (70%), implying a greater likelihood of missing positive cases or incorrectly identifying individuals as positive. This disparity underscores the importance of adopting more advanced diagnostic techniques, such as ergospirometric testing, to improve the accuracy of identifying both positive and negative cases, ultimately leading to more informed clinical decisions and better patient care.

Implications

Current study provides a platform for several important implications for research and clinical practice. This the need of time that healthcare professionals must incorporate ergospirometric testing, into their diagnostic protocols for a more comprehensive evaluation of physical health conditions. This modern approach has a high sensitivity, specificity and predictive ability that helps the healthcare providers to e diagnoses and manage the problems with more accuracy. Future research in more diverse settings is needed further to explore the implications of ergospirometric testing. All stakeholders including policymakers and healthcare organizations must investing in the infrastructure, teaching and training.
Declarations

Acknowledgements

The author would like to express his gratitude and appreciation to all those who physically, mentally, and socioeconomically contributed their utmost efforts towards the completion of this study, especially to the healthcare professionals, colleagues, and mentors.

Institutional Review Board Statement

Not Applicable

Informed Consent Statement

Not Applicable

Conflicts of Interest

No conflict of interest.

References

©Copyright 2024 by the author(s) This work is licensed under a Creative Commons Attribution 4.0 International License.